
Numerical Evaluation of High-Dimensional 
Integrals 

By T. W. Sag and G. Szekeres 

1. Introduction. In this paper we describe a practical method for the numerical 
evaluation of multiple integrals, designed for high-speed computers. To illustrate 
the method, consider the integral 

(1) e-3x dx = 0.3167376 

We evaluate it by the following three methods: 
(a) Simpson's rule 
(b) Trapezoid rule 
(c) Trapezoid rule, applied to the integral 
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This integral is derived from (1) by the following sequence of transformations: 

(i) x = 2(1 + t) 
(ii) t = tanh u/( - u2) 

(iii) u= 2y - 1. 
The important step is transformation (ii); the others merely scale down and 

displace the interval of integration so that the actual interval in terms of the 
variable u should be (-1, 1). Results by the three methods are compared in Table 1; 
the first column gives the number of points used in the calculation. 

The results in the last column, although not as good as Simpson, are consider- 
ably better than those obtained by the plain trapezoid rule. Reason for the improve- 
ment is obvious: the integrand of (2) has the property (shared with the Jacobian 
of transformation (ii)) that it vanishes, together with all its derivatives, at the 
endpoints of the interval of integration. As we shall frequently encounter this 
property, we shall briefly refer to it as property P. 

For integrands with property P the trapezoid rule is just as good as Simpson. 

For if f(x) has property P then we can replace f f(x) dx by either of the integrals 

1 ~ ~~~~~~~ 1?1/ N 

(3) I f(x) dx, f*(x) dx 

where f*(x) = f(x) for 0 < x < 1, f*(x) = 0 for x < 0 or x > 1, and N is any 
positive integer. If Simpson's rule (with N + 1 subdivisions) is applied to the two 
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TABLE 1 

(a) (b) (c) 

10 0.3167517 0.3191096 0.3185090 
20 0.3167385 0.3173313 0.3167146 
40 0.3167374 0.3168858 0.3167345 

integrals in (3) and the arithmetic means of the two results is taken, we obtain an 

evaluation of f f by means of the trapezoid rule. That method (a) nevertheless 

gives better results than (c) is due to the fact that e-X is a much milder function 
than the integrand of (2) which goes down to zero rather violently near the end- 
points of the interval. 

An explicit expression for the error can be obtained directly from the summation 
formula of Euler-Maclaurin which, in the case of a function with property P, 
takes the form 

rb N 

ff(x) dx h Zf xk) - J2r?+l 
(4) k=1 

xk=a+kh, k= 1, ,N, h= N + 

where (for every r > 0) 

(5) J2r+1 = (2r 1 B2r+1 ( h ) f(2r+1)(x) dx. 

Bm(x) is the mth Bernoulli polynomial (see [1], p. 526). 
The chief merit of method (c) is that it can be extended immediately to higher 

dimensions. We say that f(x) has property Pr (r > 0) relative to the (n-dimensional) 
region R if 

(2k-1 

(6) f(x) = > 
aX.2k-I f(X) = 0, k = 1, ,r, i r= 1, 

on the boundary of R. Then defining f(x) = 0 outside R we obtain, by repeated 
application of (4), 

N 

(7) If(x) dx = hn E f(Xk) + J?*r+ 
R ~~~~k=1 

where xl, ... , XN are equally spaced meshpoints inside R, with mesh size h, and 

J2r+1 is an expression of the form (2 + 1)1 h K2r+l where K2r+1 is a sum of multiple 

integrals of functions which are products of Bernoulli polynomials of order 2r + 1 
and partial derivatives of f(x) of order 2r + 1. If these partial derivatives have a 
reasonable bound over R and h is small enough, the error term J*r+l becomes small 
and we can apply the simple quadrature formula 

r ~~~N 
(8) ff(x) dx = hn E f(Xk) 

From tt rcp t v tesc fek=1 

From the theoretical point of view the existence of an explicit error formula is 
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of great importance; it removes the uncertainties usually associated with Monte 
Carlo type methods. The method is almost as simple as Monte Carlo and generally 
more accurate. It can be applied to almost any region, though we shall only work 
out the required transformations for the sphere, cube and simplex. The usefulness 
of the method is most obvious in higher dimensions (6-20) where hitherto it was 
practically impossible to evaluate an integral numerically, except by Monte Carlo 
methods. We have in fact been able to calculate integrals up to 20 dimensions, 
with reasonable accuracy and tolerable amount of computing time (a few minutes 
on the IBM 7090). A further advantage of the method is that it can be applied 
directly to convergent improper integrals in which the integrand becomes infinite 
on the boundary. 

Some typical results will be given in ?3. 

2. Scanning of the Standard Region. To carry out the program described in 
?1 it is necessary to find, first, a suitable region S over which the actual integration 
is performed, and, secondly, a transformation of the given region R into S with the 
property that the Jacobian of the transformation vanishes in the boundary, to- 
gether with a convenient number of higher derivatives. All transformations to be 
discussed in ?3 will in fact have property P. relative to S. 

The selection of the standard region is motivated by two requirements. First, 
we want S to have a reasonably simple shape so that its points should be given by 
easily calculable inequalities. Secondly we want a region which can be scanned by a 
regular lattice which does not contain an intolerably large number of points inside 
S and yet has a reasonably small mesh size. 

The unit cube satisfies the first condition, but not the second one. For example, 
if in 10 dimensions we take the mesh size as large as I of the side length of the cube, 
the lattice will contain 310 = 59049 meshpoints in the cube. In higher dimensions 
the situation deteriorates rapidly. 

It appears that the only region which fulfils both requirements is the unit sphere 

S: X 2 + X22 + + X2 <. 

Scanning of S in lower than 6 dimensions presents no particular problems. In more 
than 5 dimensions the scanning can be effected as follows: 

Take the lattice points of mesh size h, situated in the sphere of radius ro ( < 1), 
2 2 < 2 

X1 + + X. = ro 

with coordinates taken from the set of values 

(9) {h 4h, MhI * I, (- 1)m` (2m + 1)h, . .. 

These lattice points fall into a number of successive spherical layers of radii 

(10) Ri = lh(n + 8(i - I))1121 i = * N 

respectively, where n is the number of dimensions and 

N = [1 + 2r 2/h2- n/8] 

is the total number of layers, where ro is the radius of the sphere scanned. For 
transformations into the unit sphere, which have property PO., the values of the 
Jacobian are usually small enough to be neglected outside a radius of 0.8 in the 
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TABLE 2 

i Number of points 

2 (n) 

3 (n) 

4 n3+ 

0~~~~ 

6 (5) + 3(3 

(6 ) 4) (2) (1) 

8 (7)~~ + 5 ()+ 3 ()+ 2(2 

9 (8)~~ + 6 n6 + 6 n4 + 3 n3 

6~~~~~~~ 

10 + 7 () + 10 () + 4 () + (3) + 2 (n) 

sphere. Thus when using these transformations, it is only necessary to scan a sphere 
of radius ro = 0.8. This permits a considerable saving in computation time (or, for 
given computation time, a decrease in mesh size by a factor of 0.8) as the number of 
lattice points in the ith layer increases rapidly with i and even the omission of a 
few layers is a significant saving. 

Table 2 gives the number of points in each successive layer. 
To obtain these expressions we remark that the coordinates of the points in a 

given layer are made up of permutations of one or more combinations of the set (9). 
Thus in layer 3 the only combination which gives radius R3 is (-3h, - h, 1h, 

4h) and this set has (n) distinct permutations. In layer 7 there are four 

combinations, namely (i) six - 4h-coordinates, (ii) three - 'h-coordinates, one 
4h-coordinate, (iii) two 5 h-coordinates, (iv) one -7h-coordinate, all other co- 
ordinates -h. The respective numbers of different permutations of these combina- 

tions are n 4 (n)' (i)t (1)n 

From Table 2 we find that if for example n = 15 then 6 layers contain 6534 
meshpoints, 7 layers 17119 points, 8 layers 40144 points and 9 layers 147799 points. 
With ro = 0.8 and 6 layers the allowable mesh size is h = 3.2/A/15 + 8 X 5 - 0.4, 
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with 7 layers h = 0.38. To achieve the same mesh sizes when all points inside S 
are scanned, 11 and 13 layers would have been necessary, resulting in enormously 
large numbers of meshpoints. 

One drawback of the mesh with coordinates taken from the set (9) is that it is 
strongly biased relative to the axis pointing in the direction of (1, 1, . , 1). This 
bias can be largely compensated if we use two meshes simultaneously, one with the 
coordinate set (9) and another one with the set 

{-h, 3h - 5h, *- (-1)m+ll(2m + I)h, . 

This is equivalent to integrating the even function 2 (f}(x) + f(-x)) over either 
of these meshes. All results in ?3 were obtained in this manner. 

3. Transformations of the n-Sphere, Cube and Simplex. The most common 
regions over which multiple integrals are evaluated are the sphere, cube and simplex. 
In this section we shall describe suitable transformations for these regions. 

Let 01, .. , in be cartesian coordinates of the original region R, and xl, , x. 

the cartesian coordinates of the transformed (normal) region S. 
(a) n-sphere. If R is a sphere with center 0 and radius o- we can use a radial 

transformation 

(11) p = 0g(r), Oi = (i= 1, ,n- 1) 

where g(0) = 0, g(1) = 1, 

p = (212 + . . . + in2)1/2 r = (x12 + .+ x.2)1/2 

and Oi, 4i are the Euler angles in the (, y spaces respectively. Such a transformation 

TABLE 3 

Dimen- Number of Computed value Exact value % Error 
sion points 

2 177 0.785415 0.785396 0.002 
3 528 0.523602 0.523599 0.000 
4 1272 0.308425 0.308424 0.000 
5 1308 0.164515 0.164493 0.013 
6 1874 0.807442 X 10-1 0.807455 X 10-1 0.002 
7 3617 0.369114 X 10-1 0.369122 X 10-1 0.002 
8 6196 0.158538 X 10-1 0.158543 X 10-1 0.003 
9 9011 0.644234 X 10-2 0.644222 X 10-2 0.002 

10 11378 0.249079 X 10-1 0.249039 X 10-2 0.016 
11 12145 0.919592 X 10-3 0.919973 X 10- 0.041 
12 20585 0.325871 X 10-3 0.325992 X 10-3 0.038 
13 17239 0.111153 X 10-3 0.111161 X 10-3 0.008 
14 11873 0.365748 X 10-4 0.365762 X 10-4 0.004 
15 17119 0.116379 X 10-4 0.116407 X 1O-4 0.024 
16 24245 0.358487 X 10-5 0.359086 X 10-5 0.167 
17 11731 0.107385 X 10-5 0.107560 X 10- 0.163 
18 15388 0.312874 X 10-6 0.313362 X 10-6 0.156 
19 19932 0.887768 X 10-7 0.889236 X 10-7 0.165 
20 25520 0.245692 X 10-7 0.246114 X 10-7 0.172 
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has the obvious advantage that at all points of the layer (10) the Jacobian has the 
same value and so it is only necessary to compute it once for each layer. 

The Jacobian of transformation (11) is 

(12) a(k)/O(x) = (p/r)'-dp/dr = o-'(g(r)/r)-1g'(r) 

and we want g'(r) to vanish, together with all derivatives, at r = 1. A suitable 
function is 

(13) g(r) = tanh 1 r 

where u is a constant. The choice of u depends on the function to be integrated; 
if the function has large values near the origin and drops down further out, a larger 
value of u will be used than for functions which have large values near the boundary. 
For functions with fairly evenly distributed values u = 1.5 was found to give best 
results. 

Table 3 gives results for the constant test function f(x) = 2 n for all dimensions 
from 2 to 20. 

Similar results were obtained with "mild" functions such as Zj- (t - 1)2, 

cos ti, 
"'I 

I1exp tj . The Jacobians of the transformations from cube to 
sphere and simplex to sphere, to be discussed below, supply examples of more 
irregularly behaving functions; the percentage error grows considerably for these 
functions and reaches 2-3% in 15 dimensions with the same number of points used 
as in Table 3. 

(b) n-cube. We assume the n-cube in the normal form 

(14) -1 _t ,i , n. 

To transform it into the unit x-sphere we use the transformation 

(15) = tanh L (i= 1,...,n) 

where r = (X12 + * + xn2)1/2 and u is a suitable parameter. The Jacobian is 
n 

(16) a(t)/a(x) = Un(1 - r)-n-1 11(1 - 2) 
i=1 

TABLE 4 

Dimension Number of points Computed value % Error 

5 1308 1.00032 0.032 
6 1874 0.99985 0.015 
7 3617 0.99971 0.029 
8 6196 0.99956 0.044 
9 9011 0.99911 0.089 

10 11378 0.99754 0.246 
11 12145 0.99548 0.452 
12 10916 0.99163 0.837 
13 17239 0.98924 1.08 
14 11873 0.97937 2.06 
15 17119 0.97461 2.54 



NUMERICAL EVALUATION OF HIGH-DIMENSIONAL INTEGRALS 251 

TABLE 5 

Dimension Computed value %nx % Error 

5 7.8541 7.8540 0.00 
6 9.3977 9.4248 0.29 
7 10.982 10.996 0.14 
8 12.539 12.566 0.22 
9 14.054 14.137 0.59 

10 15.565 15.708 0.91 
11 17.104 17.279 1.01 
12 18.511 18.850 1.80 
13 19.977 20.420 2.17 
14 21.071 21.991 4.18 
15 22.441 23.562 4.77 

where (i is given by (15). Although the factor (1 -r)--1 becomes infinite on the 
boundary of the sphere, the factors (1 _ 

(i2) are of the order e- 1(1-r) as r 1 
and the Jacobian and its partial derivatives vanish at r = 1. Since the transforma- 
tion is coordinate symmetrical, the Jacobian has to be computed only for a com- 
paratively small number of coordinate combinations taken from the set (9). For 
ordinary functions u = 1.5 was again found to be the most suitable value. 

Table 4 gives results for f(z) = 1/2n, from 5 to 15 dimensions. The exact value 
of the integral is of course 1. 

The results in Table 4 are fairly typical for well-behaved functions; a large 
number of such functions (mainly of the Z8=i1 0(t) type) were tested and the 
error was found to be of the same order for all functions. The error increased 
moderately when improper integrals were tested. As a typical example we take 
f(t) = ZEn' (1 - 2)-1/2. The value of the integral is 'n7r. Results are shown in 
Table 5. 

(c) n-simplex. We had some difficulty in finding suitable transformations from 
the simplex to the sphere. Assuming the simplex in the form 

(17) 01+ 2+ ** +?n , I t O (i= 1, 0,n) 

the most obvious idea was to transform (17) into the positive orthant t* > 0 
(i = 1,.., n) by 

{i = ti + Etj (il1n) 

then into the whole y-space by 

t* =expy* (iy=1,* ,n) 

and finally into S by 

Ur 2 22 2 22 
1ur' p = Yi + ..+ + Yn2 r=Xli + + Xn. 

However, the distribution of the resulting Jacobian over the sphere was very uneven 
and gave bad results, so that the transformation was finally abandoned. 
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To obtain a more useful transformation, let us assume the simplex to be in the 
normal form 

( 18 ) 0 _1 _ 02 _ ... < in < 

This can be transformed into the cube 

O <y 1i (i , n) 

by 

(19) ts =YiYi?i = (i = 1Y , Yn n) 

with the Jacobian 
2 n--1 

(20) (y) = Y2Y3 . . .Yn 

thus reducing the problem to one of integration over a cube. However (20) is an 
exceedingly bad function to integrate, especially in higher dimensions; for the 
maximum of the function is 1, reached at the top corner of the cube, but its average 
value is as low as 1/n! 

To overcome this difficulty we transform the y-cube into yet another cube 

by means of 

ti = Yi, t2 Y2, tn = n 

for then 

a(y)/&(t) = (n! y2y32 . . yn ln1)-1 

so that the composite transformation 
n 

tz= fj t~1 
j=l 

has a constant Jacobian, 

a(k)la(t) = 1/n!. 

Finally the t-cube is transformed into the standard cube -1 ? ti' ? 1, 
(i- 1, * , n) by (j' = 2t -1 (i = 1, *, n), and the ('-cube into S by trans- 
formation (15). Since the transformation k 

I 
f' has constant Jacobian 

a(k) la ( =) 1/2nn! 

the accuracy of integrating the function f( ) = const. over the simplex is the same 
as that given in Table 4. Integrals of various other functions gave very similar 
accuracies. 

4. Conclusion. The method described in this paper can be applied with con- 
fidence for the numerical evaluation of multiple integrals over spheres, cubes, 
simplexes and similar regions up to 20 dimensions. Normally, not more than 20000 
points are required to achieve results with an error of at most a few per cent. 

Hammer, Stroud and Wymore [2], [3] and more recently Mustard, Lyness and 
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Blatt [4] have given integration formulas which could perhaps be extended to 
higher dimensions. However no actual examples of evaluations of higher dimensional 
integrals by these methods have been given. 

The only method which seems to have been used so far in dimensions higher 
than 5 is Monte Carlo. The usual version of the method gives bad results, see [5]. 
An improved version was recently suggested by Haselgrove [6], based on equidis- 
tributed sequences. The method gave about 0.003 accuracy when 1000 points were 
used to compute the 5-dimensional integral 

... f e-rls2 rdx. 

The goodness of this result is somewhat deceptive as the value of the integrand is 
very nearly unity for most of the region. In fact if the constant function 1 is in- 
tegrated by this (and practically all available) methods then the exact value is 
obtained. With our present method a constant test function can be used with just 
as much reliance as any other well behaved function. 
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